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Abstract

In this paper a fractal permeability model for bi-dispersed porous media is developed based on the fractal char-

acteristics of pores in the media. The fractal permeability model is found to be a function of the tortuosity fractal

dimension, pore area fractal dimension, sizes of particles and clusters, micro-porosity inside clusters, and the effective

porosity of a medium. An analytical expression for the pore area fractal dimension is presented by approximating the

unit cell by the Sierpinski-type gasket. The pore area fractal dimension and the tortuosity fractal dimension of the

porous samples are determined by the box counting method. This fractal model for permeability does not contain any

empirical constants. To verify the validity of the model, the predicted permeability data based on the present fractal

model are compared with those of measurements. A good agreement between the fractal model prediction of perme-

ability and experimental data is found. This verifies the validity of the present fractal permeability model for bi-dis-

persed porous media. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, a great deal of interest has been given

in the use of bi-dispersed wick in the evaporators of heat

pipes. The bi-dispersed porous structure, as shown in

Fig. 1, is composed of clusters (at macro-level), which

are agglomerated by small particles (at micro-level).

Since the clusters and particles within the clusters are

randomly distributed, this leads to macro-pores and

micro-pores of various sizes in a bi-dispersed porous

medium. Recently, Chen et al. [1] obtained some ex-

perimental data on the permeability of bi-dispersed po-

rous media. However, no predictive permeability model

is presently available in the literature for bi-dispersed

porous media.

The disordered nature of pore structures in bi-

dispersed porous media suggests the existence of a frac-

tal structure formed by both the macro-pores between

clusters and micro-pores inside clusters. These pores and

their distributions are analogous in the microstructures

to pores in sandstone [2], to islands or lakes [3] on earth,

and to contact spots on engineering surfaces [4–6].

Therefore, it is possible to obtain the permeability of bi-

dispersed porous media through a fractal analysis on

pore microstructures. Recently, Pitchumani and Rama-

krishnan [7,8] presented a fractal geometry model for

evaluating permeabilities of porous preforms used in

liquid composite molding (LCM). Their fractal model,

however, gives some unreasonable results, as pointed

out by Yu [9].

In this paper, we focus our attention on the derivation

of a fractal model for the permeability of bi-dispersed

porous media. In the following, a brief introduction of

the fractal theory is first described, and the fractal de-

scription of pore structures of a bi-dispersed porous

medium is then discussed. A fractal permeability model is

derived in terms of the tortuosity fractal dimension, pore

area fractal dimension, and porosities of the medium.

The determination of the pore area fractal dimension can
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be obtained based on the two methods: the box-counting

method and a theoretical method by approximating the

unit cell by the Sierpinski-type gasket [10]. The validity of

the proposed fractal permeability model is assessed by a

comparison with experimental data.

2. The fractal theory

Euclidean geometry describes ordered objects such as

points, curves, surfaces and cubes using integer dimen-

sions 0, 1, 2 and 3, respectively. Associated with each

dimension is a measure of the object such as the length

of a line, the area of a surface and the volume of a cube.

The measures are invariant with respect to the unit of

measurement used. However, numerous objects found in

nature [3] such as rough surfaces, coastlines, mountains,

rivers, lakes and islands, are disordered and irregular,

and they do not follow the Euclidean description due to

the scale-dependent measures of length, area and vol-

ume. These objects are called fractals, and the dimen-

sions of such objects are non-integral and defined as

fractal dimensions. The measure of a fractal object,

MðLÞ, is related to the length scale, L, through a scaling

law in the form of [3]

MðLÞ � LDf ; ð1Þ

where M can be the length of a line or the area of a

surface or the volume of a cube or the mass of an

object, and Df is the fractal dimension of an object. Eq.

(1) implies the property of self-similarity, which means

that the value of Df from Eq. (1) is a constant over a

range of length scales, L. The geometry structures such

as Sierpinski gasket, Sierpinski carpet and Koch curve

are the examples of the exact self-similar fractals,

which exhibit the self-similarity over an infinite range

of length scales [3]. However, exact self-similar fractals

in a global sense are rarely found in nature. Many

objects found in nature are not exactly self-similar,

such as the coastline of an island, they are statistically

self-similar. These objects exhibit the self-similarity in

some average sense and over a certain local range of

length scales, L. The fractal dimension Df used in this

paper is referred to both the statistical and the exact

fractals.

Nomenclature

A area or total area

dp diameter of particles

De equivalent diameter of a unit cell

Df pore area fractal dimension

DT tortuosity fractal dimension

d0 minimum diameter of a particle

K total or averaged permeability

L length scale or length

Lt capillary length

L0 representative length

M area or volume or mass or length of an object

N number of pores or capillaries

P pressure

Q total flow rate

q flow rate

R characteristic cluster radius

Subscripts

eff effective

max maximum

min minumum

p pores

i micro

Superscript

+ dimensionless

Greek letters

l viscosity

/ porosity

k hydraulic diameter or pore size

Fig. 1. Schematic of porous media with the bi-dispersed

structure: (a) schematic of a bi-dispersed porous medium; (b) an

equilateral triangular unit cell; (c) an equilateral triangular unit

cell inside clusters; (d) a square unit cell inside clusters.
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3. Fractal characteristics of porous media

A porous medium having various pore sizes can be

considered as a bundle of tortuous capillary tubes

with variable cross-sectional areas. Let the diameter of a

capillary in the medium be k and its tortuous length

along the flow direction be LtðkÞ. Due to the tortuous

nature of the capillary, LtðkÞPL0, with L0 being the

representative length. For a straight capillary, LtðkÞ ¼
L0. Wheatcraft and Tyler [11] developed a fractal scal-

ing/tortuosity relationship for flow through heteroge-

neous media, and the scaling relationship is given by

LtðeÞ ¼ e1�DTLDT

0 , where e is the length scale of mea-

surement. We argue that the diameter of capillaries are

analogous to the length scale e, which means that the

smaller the diameter of a capillary, the longer the cap-

illary. Therefore, the relationship between the diameter

and length of capillaries also exhibits the similar fractal

scaling law:

LtðkÞ ¼ k1�DTLDT

0 ; ð2Þ

where DT is the tortuosity fractal dimension, with 1 <
DT < 2, representing the extent of convolutedness of

capillary pathways for fluid flow through a medium.

Note that DT ¼ 1 represents a straight capillary path,

and a higher value of DT corresponds to a highly tor-

tuous capillary. The limiting case of DT ¼ 2, corre-

sponds to a highly tortuous line that fills a plane [11].

Eq. (2) diverges as k ! 0, which is one of the properties

of fractal lines [4]. The tortuosity of a capillary pathway

is similar to the triadic Koch teragon [3] which satisfies

LðeÞ ¼ e1�D, where LðeÞ is the length of the triadic Koch

teragon whose sides are of length e. This exact formula is

identical with Richardson’s empirical law relative to the

coast of Britain [3]. Eq. (2) is one of the fractal scaling

laws characterizing the fractal properties of pore struc-

tures.

Besides the convolutedness of the capillary pathways,

the number of capillary pathways with the pore size k is

another important property. The pores in a porous

medium are analogous to the islands or lakes on earth.

The cumulative size-distribution of islands on the earth’s

surface follows the power law NðA > aÞ � a�D=2 [3],

where N is the total number of islands of area (A)

greater than a, and D is the fractal dimension of the sur-

face. Majumdar and Bhushan [6] used this power law to

describe the contact spots on engineering surfaces, and

the power-law relation is

NðAP aÞ ¼ amax

a

� �Df =2

; ð3Þ

where amax ¼ gk2
max, a ¼ gk2, with k being the diameter

or pore size and g being a geometry factor. From Eq. (3)

the number of islands of area lying between a and aþ da
is

�dN ¼ Df

2
aDf=2
max a

�ðDf=2þ1Þ da: ð4Þ

Since the pores in porous media are analogous to the

islands or lakes on earth or spots on engineering sur-

faces, the cumulative size-distribution of pores or islands

should also follow the same fractal scaling law. Thus,

Eqs. (3) and (4) can be rewritten as

NðLP kÞ ¼ kmax

k

� �Df

ð5Þ

and

�dN ¼ Dfk
Df
maxk

�ðDfþ1Þ dk; ð6Þ

respectively, where Df , the same fractal dimension [12–

14] as in Eq. (1), is the fractal dimension. The negative

sign in Eqs. (4) and (6) implies that the island or pore

population decreases with the increase of island or pore

size, and �dN > 0. The number of pores from Eq. (5)

becomes infinite as k ! 0, which is one of properties of

fractal objects [3]. Eq. (5) describes the scaling rela-

tionship of the cumulative pore population. Eqs. (1) and

(5) hold for both exactly and statistically self-similar

fractal geometries. The total number of pores or islands

or spots, from the smallest diameter kmin to the largest

diameter kmax, can be obtained from Eq. (5) as

NtðLP kminÞ ¼
kmax

kmin

� �Df

: ð7Þ

In Eqs. (4)–(6), 1 < Df < 2 in the two-dimensional

space. Dividing Eq. (6) by Eq. (7) gives

� dN
Nt

¼ Dfk
Df

mink
�ðDfþ1Þ dk ¼ f ðkÞdk; ð8Þ

where f ðkÞ ¼ Dfk
Df

mink
�ðDfþ1Þ is the probability density

function, which satisfies the following condition

f ðkÞP 0: ð9Þ

As in the probability theory, the probability density

function, f ðkÞ, should also satisfy the following rela-

tionship:Z 1

�1
f ðkÞdk ¼

Z kmax

kmin

f ðkÞdk ¼ 1� kmin

kmax

� �Df

: ð10aÞ

The above equation becomesZ 1

�1
f ðkÞdk ¼

Z kmax

kmin

f ðkÞdk ¼ 1 ð10bÞ

if and only if

kmin

kmax

� �Df

¼ 0 ð11Þ

is satisfied. Eq. (11) implies that kmin 	 kmax must be

satisfied for fractal analysis of a porous medium [15];
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otherwise the porous medium is a non-fractal medium.

For example, if kmin ¼ kmax, both of Eqs. (11) and (10b)

do not hold. Therefore, caution must be taken for fractal

analysis of porous media, and Eq. (11) can be considered

as a criterion whether a porous medium can be charac-

terized by fractal theory and technique [15]. If Eq. (11)

does not hold, the porous medium is a non-fractal me-

dium, and the fractal theory and technique are not ap-

plicable. In general, kmin=kmax < 10�2 in porous media

and Eq. (11) holds approximately. Thus, the fractal

theory and technique can be used to analyze properties

of porous media. Eqs. (1), (2), (5), (6) and (11) form the

basis of the present fractal permeability model, which

will be derived in the following sections.

4. Fractal permeability for capillary tubes

Consider a unit cell consisting of a bundle of tortuous

capillary tubes with variable cross-sectional area. The

total volumetric flow rate, Q, through the unit cell is a

sum of the flow rates through all the individual capil-

laries. The flow rate through a single tortuous capillary

is given by modifying the well-known Hagen–Poiseulle

equation [16] to give

qðkÞ ¼ p
128

DP
LtðkÞ

k4

l
; ð12Þ

where k is the hydraulic diameter of a single capillary

tube, l is the viscosity of the fluid, DP is the pressure

gradient, and Lt is the length of the tortuous capillary

tube. The total flow rate Q can be obtained by inte-

grating the individual flow rate, qðkÞ, over the entire

range of pore sizes from the minimum pore kmin to the

maximum pore kmax in a unit cell. According to Eqs. (2),

(6) and (12), we have

Q ¼ �
Z kmax

kmin

qðkÞdNðkÞ

¼ p
128

DP
l

A
L0

L1�DT

0

A
Df

3þ DT � Df


 k3þDT

max 1

"
� kmin

kmax

� �3þDT�Df

#

¼ p
128

DP
l

A
L0

L1�DT

0

A
Df

3þ DT � Df


 k3þDT

max 1

"
� kmin

kmax

� �Df kmin

kmax

� �3þDT�2Df

#
:

ð13Þ

Since 1 < DT < 2 and 1 < Df < 2, the exponent 3þ DT�
2Df > 0. Also, because kmin=kmax � 10�2 and ðkmin=
kmaxÞDf ffi 0, and therefore 0 < ðkmin=kmaxÞ3þDT�Df < 1. It

follows that Eq. (13) can be reduced to

Q ¼ �
Z kmax

kmin

qðkÞdNðkÞ

¼ p
128

DP
l

A
L0

L1�DT

0

A
Df

3þ DT � Df

k3þDT

max : ð14Þ

The major difference between Eq. (14) and the expres-

sion given by Pitchumani and Ramakrishnan [7,8] is that

the criterion given by Eq. (11) was not taken into con-

sideration in their model. Furthermore, the results of

integrations for the total flow rate and for the perme-

ability in their work [7,8] were found to be in error [9].

Using Darcy’s law, we obtain the expression for the

permeability of a porous medium as follows:

K ¼ lL0Q
DP A

¼ p
128

L1�DT

0

A
Df

3þ DT � Df

k3þDT

max ; ð15Þ

which indicates that the permeability is a function of the

pore fractal dimension Df , tortuosity fractal dimension

DT and structural parameters, A, L0 and kmax. If a

straight capillary model ðDT ¼ 1Þ is assumed, Eqs. (14)

and (15) can be reduced to

Q ¼ p
128

DP
l

A
L0

1

A
Df

4� Df

k4
max; ð16Þ

K ¼ p
128

1

A
Df

4� Df

k4
max; ð17Þ

respectively. Eqs. (14)–(17) indicate that the flow rate

and permeability are very sensitive to the maximum pore

size kmax. It is also shown that the higher the fractal

dimension Df , the larger the flow rate and the perme-

ability value. From Eqs. (16) and (17), it can be seen that

the flow rate and the permeability will reach the possible

maximum values as the pore area fractal dimension

approaches its possible maximum value of 2. The fractal

dimension Df ¼ 2 corresponds to a smooth surface or

plane or a compact cluster [3,17–20]. This means that if

we consider a smooth surface or a compact cluster or a

circle or a square to be the cross-section of a pore, the

fractal dimension of the cross-section is 2 and the pore

volume fraction of the cross-section is 1. Both the flow

rate and the permeability are maximum under such a

condition. Thus, for flow through the unit cell with a

single capillary tube or pore with Df ¼ 2, we have the

maximum flow rate and maximum permeability from

Eqs. (16) and (17),

Qmax ¼
p
128

DP
L0l

k4
max ¼

D2
e

32

ADP
L0l

; ð18Þ

Kmax ¼
p
128

1

A
k4
max ¼

D2
e

32
: ð19Þ

Eq. (18) is exactly the Hagen–Poiseulle equation [16],

and the permeability value of D2
e=32 is exactly the ex-

pression for flow through a pipe. This indicates that our
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model is consistent with the physical situation. There-

fore, one can find the flow rate and the permeability for

flow through the unit cell with a straight capillary tube

either from Eq. (12) by setting DT ¼ 1 (and consequently

Lt ¼ L0) or from Eqs. (18) and (19). In comparison, the

fractal model presented by Pitchumani and Rama-

krishnan [7,8] gives zero total flow rate and zero per-

meability for Df ¼ 2, which is physically unrealistic.

5. Fractal permeability model for bi-dispersed media

Fig. 1(a) is a schematic of the bi-dispersed porous

medium that contains many clusters formed by particle

agglomeration. There are two types of pores: macro-

pores (on the order of 0.1 cm) between clusters and

micro-pores (on the order of 10�3 cm) between particles

inside each cluster. It is assumed that the size distribu-

tion of the macro-pores and the micro-pores is similar,

and the tortuosity of flow pathways between clusters and

between particles within clusters is also similar. For the

present bi-dispersed porous media, we choose an equi-

lateral triangle as a unit cell as shown in Fig. 1(b). Figs.

1(c) and (d) are the schematic of possible micro-config-

urations of particles, and two configurations (equilateral

triangle and square) are assumed. Their micro-porosities

are /i ¼ 1� p=2
ffiffiffi
3

p
ffi 0:093 and /i ¼ 1� p=4 ffi 0:215,

respectively. For the unit cell shown in Fig. 1(b), the

effective porosity is given by

/eff ¼
ðA� pR2=2Þ þ /ipR

2=2

A
; ð20Þ

where A and R are the total area of the unit cell and the

average radius of the clusters. Eq. (20) can be solved to

give the following expression for the total area of the

unit cell:

A ¼ 1

2
pR2 1� /i

1� /eff

	 

ð21Þ

where the porosity /eff can be measured based on the

density method [21] and R can be measured experi-

mentally. Eq. (21) shows that the total area of the unit

cell is related to the porosities (/i and /eff ) of the me-

dium and averaged size (R) of the clusters.

The maximum macro-pore area can be calculated

from Fig. 1(b) which gives

Ap;max ¼ A� pR2=2 ¼ 1

2
pR2 1� /i

1� /eff

�
� 1

�
: ð22Þ

The irregular geometry of macro-pore area Ap;max can be

approximated as a circle as

Ap;max ¼ pk2
max=4: ð23Þ

Substituting Eq. (22) into Eq. (23) and solving for kmax

give

kmax ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1� /i

1� /eff

� 1

� �s
; ð24Þ

which shows the relation between the macro-pore size

in terms of the effective porosity of a medium and the

cluster size. Since the flow in the bi-dispersed porous

media passes through not only the macro-pores between

clusters but also the micro-pores inside clusters, the flow

is very complex and may be three-dimensional. When

the fluid flows over the clusters, it passes through not

only the central-pore but also the narrow gaps (the size

is smaller than that of the central-pore) between the

adjacent two clusters (see Fig. 2). The unit cell as shown

in Fig. 1(b) is correct only for the one-dimensional flow,

so is the maximum macro-pore size, kmax, given by Eq.

(24). Therefore, the gap size between the adjacent two

clusters should be taken into account for the macro-pore

size. The gap size between the adjacent two clusters can

be obtained from the total area of the unit cell as shown

in Fig. 1(b), which is given by

DL ¼ L� 2R ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pffiffiffi
3

p 1� /i

1� /eff

s 
� 2

!
; ð25Þ

where L, the side length of the equilateral triangle unit

cell, can be obtained from the relation of A ¼
ffiffiffi
3

p
L2=4

where A is also given by Eq. (21). Eq. (25) indicates that

the gap size is a function of the porosities /eff and /i,

and the cluster size R. Note that the gap size DL given by

Eq. (25) is the maximum macro-pore size for the flow

around the clusters in a bi-dispersed porous medium,

while kmax given by Eq. (24), is the maximum macro-

pore size in the direction perpendicular to paper as

shown in Fig. 1(b). When the flow through a porous

medium, it passes not only through the maximum

Fig. 2. Schematic of flow through a bi-dispersed medium and

its tortuosity.
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macro-pores but also through the narrow channels with

the width of DL. These maximum pores and the narrow

channels are in the same direction. Thus, the average

maximum macro-pore size of the bi-dispersed porous

medium �kkmax is assumed approximately to be

kmax ¼ ðkmax þ DLÞ=2: ð26Þ

Finally, we obtain the fractal permeability of a bi-

dispersed medium by modifying Eq. (15) as follows:

K ¼ p
128

L1�DT

0

A
Df

3þ DT � Df

k
3þDT

max ; ð27Þ

where A and �kkmax are determined by Eqs. (21) and (24)–

(26), and L0 is given by

L0 ¼ 2Rþ DL ð28Þ

as is shown in Fig. 2. Note that the fractal permeability

given by Eq. (27) does not have any empirical constants.

The mono-dispersed porous medium can be considered

as a special case of the bi-dispersed porous media by

setting /i ¼ 0 in the relevant equations. Thus, the per-

meability of a mono-dispersed medium is also given by

Eq. (27) with

A ¼ 1

2
pR2 1

1� /eff

; ð29aÞ

kmax ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/eff

1� /eff

s
; ð29bÞ

DL ¼ L� 2R ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pffiffiffi
3

p 1

1� /eff

s 
� 2

!
; ð29cÞ

which are obtained from Eqs. (21), (24) and (25)

with /i ¼ 0. Once the value of the pore area fractal di-

mension Df and the tortuosity fractal dimension DT are

found, the permeability of the bi- and mono-dispersed

media can be determined. In the next section, we will

discuss the determination of the fractal dimensions Df

and DT.

6. Determination of Df and DT

6.1. Evaluation of fractal dimension Df

We now present two methods for the determination

of Df : one is the box-counting method based on Eq. (5),

and the other is the approximation of self-similarity

based on the Sierpinski-type gasket model [10].

6.1.1. Box-counting method

The pore area fractal dimension Df can be deter-

mined based on the box-counting method [22]. This

method is based on the image analysis of a unit cell or a

sufficiently large cross-section of a sample along a plane

normal to the flow direction. In this method, the cross-

section under consideration is discretized using square

boxes of size, k, then the number, NðkÞ, of boxes re-

quired to completely cover the pore areas is counted.

The pore area fractal dimension, Df , can be determined

by the value of the slope of a linear fit through data on a

logarithmic plot of the cumulative number of pores

NðLP kÞ versus the pore size k.
We now apply the box-counting method to determine

the pore area fractal dimension Df of the two bi-dis-

persed porous samples used by Chen et al. [1]. These bi-

dispersed porous samples were made of copper particles

with effective porosities of 0.52 and 0.54, respectively.

The samples were polished for image analyses under an

optical microscope. Fig. 3 shows the image of the bi-

dispersed porous sample with the effective porosity of

0.52, where the black and white regions are pores and

clusters formed by agglomerated of copper particles,

respectively. Since the micro-pores inside clusters are

very small and the copper particles are soft, it is difficult

to see the micro-pores inside clusters after being pol-

ished. The softwares, Photoshop 5.0 and Visual C++5.0,

were used to record NðkÞ � k of the macro-pores.

Figs. 4(a) and (b) are the logarithmic plots of the

cumulative number of macro-pores versus pore sizes,

NðLP kÞ � k, for the two bi-dispersed porous samples

with /eff ¼ 0:52 and /eff ¼ 0:54, respectively. It is seen

that the number of cumulative macro-pores decreases as

the pore size increases. The data follow a linear rela-

tionship on the logarithmic scale, and this confirms the

statistical fractal nature of the microstructures of the bi-

dispersed porous media. From the slopes of these

straight lines we can determine the fractal dimensions

Fig. 3. An image photo of a bi-dispersed sample.
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Df ¼ 1:79 for the sample with /eff ¼ 0:52 (Fig. 4(a)) and

Df ¼ 1:80 for the sample with /eff ¼ 0:54 (Fig. 4(b)).

6.1.2. Approximation of the Sierpinski-type gasket

Taking a close look at Figs. 1(a)–(c), we can find the

approximate self-similarity existing in the macro-struc-

ture between clusters and the micro-structure between

particles inside each cluster. This motivates us to use the

Sierpinski-type gasket model to simulate the bi-dis-

persed porous media. The unit cell shown in Figs. 1(b)

and (c) can be approximated by the Sierpinski gasket [3]

as shown in Fig. 5(a), which is an exact self-similarity

fractal geometry. The shaded area fractal dimension is

1.585 (3 ¼ 2Df , Df ¼ ln 3= ln 2 ¼ 1:585) [3,10]. However,

Fig. 5(a) is only a special case of the Sierpinski-type

gaskets with L ¼ 2 [10]. Figs. 5(b) and (c) demonstrate

the Sierpinski-type gaskets with L ¼ 3 and 5, respec-

tively. If the white areas in Figs. 5(b) and (c) are the

pores, their respective pore area fractal dimensions are

1.0 (3 ¼ LDf ¼ 3Df , Df ¼ ln 3= ln 3 ¼ 1) and 1.594 (13 ¼
LDf ¼ 5Df , Df ¼ ln 13= ln 5 ¼ 1:594), respectively. Based
on the Sierpinski-type gasket structure, the total pore

area, including macro-pores and micro-pores for the

unit cell as shown in Fig. 1(b), can be approximately

calculated by

Ap ¼ ðLþÞDf ; ð30Þ

where Ap is the dimensionless total pore area and

Lþ ¼ L=d0 with d0 being the minimum particle diameter

within a cluster. It follows from the above equation that

Df ¼ lnAp= ln Lþ: ð31Þ

To obtain the expression for Lþ, we note that the ef-

fective porosity of the unit cell can be expressed as

/eff ¼ Ap=Aþ; ð32Þ

where the dimensionless total area of the unit cell Aþ can

be written as

Aþ ¼ ðLþÞ2 ð33Þ

or

Lþ ¼
ffiffiffiffiffiffi
Aþ

p
¼ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /i

2ð1� /effÞ

s
ð34Þ

with dþ ¼ 2R=d0, Aþ ¼ A=ðpd2
0=4Þ, where A is given by

Eq. (21). Combining Eqs. (31)–(34) yields

Df ¼ 2þ ln/eff

ln dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� /iÞ=ð2ð1� /effÞÞ

p� � : ð35aÞ

Setting /i ¼ 0 in Eq. (35a) gives

Df ¼ 2þ ln/eff

ln dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2ð1� /effÞÞ

p� � ; ð35bÞ

which is the fractal dimension for mono-dispersed po-

rous media. Eqs. (35a) and (35b), with no other empir-

ical constant, reveals that the pore area fractal

dimension is a function of porosities ð/eff ;/iÞ, the av-

erage cluster size R, and the minimum particle diameter

d0. Although the values of /eff and R can easily

be measured, the values of d0 and /i are difficult to

(a)
(b)

Fig. 4. A logarithmic plot of the cumulative pore number (NðLP kÞ) versus k.

(a) (b) (c)

Fig. 5. A Sierpinski-type fractal generator: (a) L ¼ 2, (b) L ¼ 3,

and (c) L ¼ 5.
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measured in practice. Eqs. (35a) and (35b) shows that

Df ¼ 2 for /eff ¼ 1, and vice versa. This is as expected

and is consistent with the physical situation. Eqs. (35a)

and (35b) also shows that the smaller the cluster the

lower the fractal dimension because /eff < 1 and ln/eff

is a negative value. It should be noted that although the

Sierpinski-type gasket model is applied to obtain the

fractal dimension and porosities of the bi-dispersed

porous medium in this paper, it cannot be applied to

obtain the permeability of a bi-dispersed porous medium

since the flow pathways in bi-dispersed media are not

straight.

Fig. 6 is a logarithmic plot of the total pore area Ap

given by Eq. (32) versus the length scale Lþ given by Eq.

(34). Note that both of these quantities are a function of

the effective porosity /eff . Since the values of d0 and /i

are difficult to measure exactly, we use dþ ¼ 24 and /i is

computed according to /i ¼ 0:342/eff [23]. The value of

/i thus computed falls in the range of 0:093 < /i <
0:215, i.e., the micro-porosities shown in Figs. 1(c) and

(d). According to Eq. (30), the local slope of lnðApÞ
versus lnðLþÞ gives the value of Df at a specific value of

Lþ. It is shown that the slope of the curve in Fig. 6 is

decreasing as the value of Lþ is increased, i.e., as the

effective porosity decreases according to Eq. (34). It

is found that the average slope in the range of 0:43 <
/eff < 0:63 is Df ¼ 1:76
 0:08, which is the average

fraction dimension in this range of the effective porosity.

This value compares favorably with the values of Df ¼
1:79 at /eff ¼ 0:52 and Df ¼ 1:80 at /eff ¼ 0:54 from the

box-counting method.

In Fig. 7, we plot the values of Df versus the effective

porosity. The data points are the values determined by

the box-counting method and the lines are the results

computed from Eq. (35a). As shown in Fig. 7, if dþ ¼ 24

was used for computation, the value of Df matches with

the values obtained from the box-counting method. To

see the effect of dþ on Df , computations were also car-

ried for dþ ¼ 18 and the results are also presented in Fig.

7. It is shown that the smaller the relative cluster size,

dþ, the lower the fractal dimension. The reason is that

the smaller the cluster, the smaller the total area at fixed

/eff , which results in the decrease of the total pore area

and consequently, the decrease of the fractal dimension.

From Fig. 7 it can also be seen that the pore area fractal

dimension will approach its possible maximum value of

2 as the porosity reaches the value of 1. This is as ex-

pected and is consistent with the actual physical situa-

tion, which verifies the present fractal dimension model.

6.2. Evaluation of tortuosity fractal dimension DT

Since we have assumed that there is a similarity of

tortuosity of flow pathways between clusters and be-

tween particles within clusters, thus, we need to deter-

mine only the tortuosity of pathways between clusters.

Because the tortuosity of flow paths between clusters is

very similar to the streamtubes [11] in heterogeneous

media or coastlines and is described by Eq. (2), there-

fore, the tortuosity dimension DT can also be determined

by the box-counting method.

Fig. 8 presents five random flow pathways between

clusters in the porous sample shown in Fig. 3, where the

flow is assumed under a pressure gradient from left to

right. The same software that was used for finding Df

based on the box-counting method is now applied to

find the tortuosity fractal dimension DT for these five

flow pathways. Fig. 9 shows a plot of lnLtðkÞ versus ln k
for the pathway shown in Fig. 8(e), in which the fractal

dimension can be determined from the slope of the

straightline that gives DT ¼ 1:12. Similarly, the values of

DT from the other four pathways are found to be 1.07,

1.08, 1.09 and 1.13, respectively. Thus, the averaged

values of the tortuosity fractal dimension for the five

pathways in this bi-dispersed sample with an effective

porosity of 0.52 is DT ¼ 1:10 . Wheatcraft and Tyler [11]

Fig. 7. A comparison of the different methods for the fractal

pore area dimension Df versus porosity and relative cluster size

dþ.

Fig. 6. A logarithmic plot of the total pore area versus Lþ.
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performed the Monte Carlo simulations on an ensemble

average fractal travel distance LtðkÞ versus scale of k for

the fractal random walk model simulating the disper-

sivity in heterogeneous media, and obtained the tortu-

osity fractal dimension of DT ¼ 1:081 , which is very

close to our result of DT ¼ 1:10 .

7. Comparison of model predictions and permeability data

We now compare the permeability values based on

the present fractal models with experimental data of

Chen et al. [1] for a mono-dispersed porous sample (with

/ ¼ 0:49) and three bi-dispersed porous samples (with

/eff ¼ 0:52, 0.54, 0.56), respectively. Computations of

Eq. (27) were carried out for R ¼ 0:30 mm, DT ¼ 1:1,
dþ ¼ 24 with Df determined from Eqs. (35a) and (35b).

The results are presented in Figs. 10(a) and (b) for the

mono-dispersed medium and the bi-dispersed media,

respectively. The dotted line in Fig. 10(a) shows that the

fractal permeability model for mono-dispersed porous

medium is slightly lower than experimental data [1]. In

the same figure, we also plot the well known Kozeny–

Carman equation [24] for the permeability of a porous

bed packed with uniform spherical solid particles (a

mono-dispersed porous medium):

K ¼
/3d2

p

að1� /Þ2
; ð36Þ

where / is the porosity, dp is the particle’s diameter, and

a ¼ 180 is an empirical constant. It is shown that the

present fractal permeability model for mono-dispersed

porous media (shown as a dashed line) is in better

agreement with the experimental datum than the Koz-

eny–Carman model given by Eq. (36). Fig. 10(b) is a

comparison of the present fractal permeability model for

bi-dispersed media with experimental data [1]. Again, it

is shown that the fractal permeability model is in good

agreement with measurements. A comparison of Figs.

10(a) and (b) shows that the permeability of the mono-

dispersed porous medium is much higher than that of

the bi-dispersed porous medium at the same effective

porosity. This is because the permeability is very sensi-

tive to the macro-(maximum) pore size (kmax), and the

mono-dispersed porous medium has larger macro-pores

than that of the bi-dispersed porous medium at the same

effective porosity as shown in Eq. (24).

Fig. 11 shows the effects of Df and DT on perme-

abilities at various porosities. Fig. 11(a) shows that at a

fixed value of DT (DT ¼ 1:2) the permeability increases

with the pore area fractal dimension Df . The reason is

that as Df is increased, the porosity or the total pore area

increases (see Fig. 7), and the permeability will reach the

maximum value of Df ¼ 2 as stated in Section 4. Fig.

11(b) shows that at a fixed Df (Df ¼ 1:8) the perme-

ability decreases with the increase of the tortuosity frac-

tal dimension DT. This is because when the tortousity

Fig. 9. Determination of tortuosity fractal dimension of a bi-

dispersed porous sample with porosity of 0.52.

Fig. 8. Possible tortuous pathways and their tortuosity fractal

dimensions for flow through a porous sample: (a) DT ¼ 1:07;

(b) DT ¼ 1:08; (c) DT ¼ 1:09; (d) DT ¼ 1:13; (e) DT ¼ 1:12.
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fractal dimension DT increases, the flow pathways are

more tortuous, causing more resistance for flow and

lower the permeability value.

8. Concluding remarks

A fractal permeability model for bi-dispersed porous

media, taking into consideration of the non-uniform

pore sizes, is derived in this paper. The fractal per-

meability model, given by Eq. (27), is in terms of the

tortuosity fractal dimension DT, pore area fractal di-

mension Df , and the structural parameters A, �kkmax, L0.

The last three structure parameters, given by Eqs. (21),

(24)–(26) and (28), respectively, depend on the porosities

of the bi-dispersed porous medium (i.e., /i and /eff ) as

well as the average size of the clusters R and the mini-

mum particle diameter d0. Thus, the permeability of a bi-

dispersed porous medium can be written implicitly as

K ¼ K DT;Df ;/eff ;/i;R; d0ð Þ; ð37Þ

where the parameters /eff , /i, R, d0 are determined from

measurements, the fractal dimension DT can be deter-

mined by the box-counting method, and the value of Df

can be determined based on the box-counting method

and or from Eqs. (35a) and (35b). The permeability of a

mono-dispersed porous medium can be considered as a

special case of the bi-dispersed porous medium by set-

ting /i ¼ 0. The predictions of permeabilities of mono-

dispersed and bi-dispersed porous media based on the

fractal model are found to be in good agreement with

experimental data. This verifies the validity of the pre-

sent fractal permeability model for porous media.

Acknowledgements

This work was supported by the Research Grant

Council of Hong Kong Special Administrative Region

through Grant Number HKUST6044/97E.
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Fig. 11. Effects of Df and DT on permeability: (a) permeability versus Df ; (b) permeability versus DT.
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